RadLoco: A Rapid and Low Cost Indoor Location-Sensing System

Eugene Hyun, Michael McGuire, Mihai Sima

Department of Electrical and Computer Engineering University of Victoria

Chinacom 2008 Conference

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Outline

- Motivation
- Current Technologies
- Problem Definition

2 Location Sensing System

- Overview
- Data Collection
- Location Estimation
- Simple Graphical Example

3 Experiment and Results

- ECS Room 116
- ECS 5th and 6th floors

Conclusions

Motivation Current Technologies Problem Definition

Location Aware Computing

Motivation

Location aware computing consists of the use of location information to improve the value of a wireless network for the users

Examples

- providing navigation through unfamiliar environments
- dynamic pre-allocation of resources

Motivation Current Technologies Problem Definition

Location Aware Computing

Motivation

Location aware computing consists of the use of location information to improve the value of a wireless network for the users

Examples

- providing navigation through unfamiliar environments
- dynamic pre-allocation of resources

Motivation Current Technologies Problem Definition

Location Aware Computing

Motivation

Location aware computing consists of the use of location information to improve the value of a wireless network for the users

Examples

- providing navigation through unfamiliar environments
- dynamic pre-allocation of resources

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation Current Technologies Problem Definition

Current Technologies for Location-Sensing

Global Position System (GPS) and Cellular Networks

poor location performance indoors

Nireless Local Area Networks

- Many environments have ubiquitous wireless networks
- Wireless network access is being incorporated into smaller mobile devices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation Current Technologies Problem Definition

Current Technologies for Location-Sensing

Global Position System (GPS) and Cellular Networks

poor location performance indoors

Wireless Local Area Networks

- Many environments have ubiquitous wireless networks
- Wireless network access is being incorporated into smaller mobile devices

Motivation Current Technologies Problem Definition

Current Technologies for Location-Sensing

Global Position System (GPS) and Cellular Networks

poor location performance indoors

Wireless Local Area Networks

- Many environments have ubiquitous wireless networks
- Wireless network access is being incorporated into smaller mobile devices

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation Current Technologies Problem Definition

Problem Definition

Problem

 The relationship between location and radio signal strength is highly non-linear and not known a priori.

Survey data collection is time consuming.

Solution

- Use non-parametric **estimation technique** to reduce noise and required number of survey points.
- Sensory network of Ultrasonic/Radio devices to aid in rapid survey data collection.

Motivation Current Technologies Problem Definition

Problem Definition

Problem

- The relationship between location and radio signal strength is highly non-linear and not known a priori.
- Survey data collection is time consuming.

Solution

- Use non-parametric **estimation technique** to reduce noise and required number of survey points.
- Sensory network of Ultrasonic/Radio devices to aid in rapid survey data collection.

Overview Data Collection Location Estimation Simple Graphical Example

Location Sensing System Overview

Details

2 stages: Data Collection and Data Processing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Overview Data Collection Location Estimation Simple Graphical Example

Location Sensing System Overview

Details

Data Collection: Cricket Sensory Network

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Overview Data Collection Location Estimation Simple Graphical Example

Cricket Sensory Network for Ground Truth Location

Sensory Network

- provide ground truth location for survey point.
- use modified steepest descent and Newton's method optimization

Cricket Details

- accuracy = mean accuracy of 14 cm
- sensors = ultrasonic (40 kHz), radio (433 MHz)
- **developers** = Networks and Mobile Systems Group at MIT.
- **cost** = \$3000 for 12 crickets covering 500 m^2

Overview Data Collection Location Estimation Simple Graphical Example

Cricket Sensory Network for Ground Truth Location

Sensory Network

- provide ground truth location for survey point.
- use modified steepest descent and Newton's method optimization

Cricket Details

- accuracy = mean accuracy of 14 cm
- sensors = ultrasonic (40 kHz), radio (433 MHz)
- developers = Networks and Mobile Systems Group at MIT.
- cost = \$3000 for 12 crickets covering 500 m²

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Overview Data Collection Location Estimation Simple Graphical Example

Location Sensing System Overview

Details

Data Collection: WLAN

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Overview Data Collection Location Estimation Simple Graphical Example

WLAN information

WLAN data

- RSS from base station
- MAC of base station
- Time
- SSID (network ID)

Survey Data

- WLAN data and ground truth location compose of a survey point.
- Collect several survey points within a floor or room to create a survey data set.

Overview Data Collection Location Estimation Simple Graphical Example

WLAN information

WLAN data

- RSS from base station
- MAC of base station
- Time
- SSID (network ID)

Survey Data

- WLAN data and ground truth location compose of a survey point.
- Collect several survey points within a floor or room to create a survey data set.

Overview Data Collection Location Estimation Simple Graphical Example

Location Sensing System Overview

Details

Data Processing: Location Estimation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Overview Data Collection Location Estimation Simple Graphical Example

Location Estimation

Estimation Algorithm

Non-Parametric Kernel/Parzen Estimation Technique using a sum of multivariate Gaussian Distributions.

Variables

- **b** = vector of base stations (WLAN)
- *z* = vector of receive signal strength measurements (WLAN)
- $\theta = x \& y$ coordinates (survey points)
- $\hat{\theta} = x \& y$ coordinate (estimated location)

Overview Data Collection Location Estimation Simple Graphical Example

Location Estimation

Overview Data Collection Location Estimation Simple Graphical Example

Simple Graphical Example

Explanation

3 base stations and 4 cricket sensors

Overview Data Collection Location Estimation Simple Graphical Example

Simple Graphical Example

Explanation

crickets provide ground truth location (blue dots)

Overview Data Collection Location Estimation Simple Graphical Example

Simple Graphical Example

Explanation

base stations provide RSS vector (z)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Overview Data Collection Location Estimation Simple Graphical Example

Simple Graphical Example

Explanation

take RSS measurement at current unknown location

Overview Data Collection Location Estimation Simple Graphical Example

Simple Graphical Example

Explanation

and use the survey points collected prior

Overview Data Collection Location Estimation Simple Graphical Example

Simple Graphical Example

Explanation

to calculate the weight from z feature and Kernel estimator

Overview Data Collection Location Estimation Simple Graphical Example

Simple Graphical Example

Explanation

estimated location is calculated using weights and θ feature

ECS Room 116 ECS 5th and 6th floors

ECS 116 - Experimental Setup

Environment

- Engineering and Computer Science building lecture hall 116
- 117 seats divided into 8 rows
- 10 x 13 meters with 2 seats/m

Equipment

- hardware: Dell Inspiron laptop + Intel 802.11g WLAN card
- software: Netstumber, Radloco, MySQL

ECS Room 116 ECS 5th and 6th floors

ECS 116 - Experimental Setup

Environment

- Engineering and Computer Science building lecture hall 116
- 117 seats divided into 8 rows
- 10 x 13 meters with 2 seats/m

Equipment

- hardware: Dell Inspiron laptop + Intel 802.11g WLAN card
- software: Netstumber, Radloco, MySQL

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

ECS Room 116 ECS 5th and 6th floors

ECS 116 - Experimental Results

Description

- We were able to obtain over 80% accuracy within 4 meters or 6 seats.
- Motivation for ECS 5th and 6th floor

ECS 5th and 6th floors

Conclusions

ECS 5th and 6th floors - Experimental Setup

Environment

- Building has an atrium like structure
- Experiments were restricted to hallways and public conference rooms.

- WAPs from networks UVicOpen or engrnet.
- more than 35 unique WAPs and minimum of 12 WAPs

ECS 5th and 6th floors

Conclusions

ECS 5th and 6th floors - Experimental Setup

Environment

- Building has an atrium like structure
- Experiments were restricted to hallways and public conference rooms.

Base Station (WAP) Information

- WAPs from networks UVicOpen or engrnet.
- more than 35 unique WAPs and minimum of 12 WAPs visible at any location on a floor.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

ECS Room 116 ECS 5th and 6th floors

Conclusions

Experimental Results - Decimation of Survey Set

Description

Decimating survey set yields near identical performance.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

ECS Room 116 ECS 5th and 6th floors

Experimental Results - 6th vs. 5th floor

Description

Both floor have similar accuracy of **3.5 m** more than 80% of the time.

ECS Room 116 ECS 5th and 6th floors

Conclusions

Experimental Results - Number of Base Stations

Description

Increasing base stations yields better accuracy

Eugene Hyun, Michael McGuire, Mihai Sima

RadLoco: A Rapid and Low Cost Indoor Location-Sensing System

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ECS Room 116 ECS 5th and 6th floors

Conclusions

Experimental Results - Combined Datasets

Description

Combined floors data sets provides 3D location accuracy with over **98% floor accuracy**

Conclusions

Major Contributions

- location-sensing system that locates mobile computing devices indoors based on WLAN technology.
- sensory network composed of radio/ultrasonic devices allow rapid data collection
- 98% accuracy floor accuracy and location estimations within 3.5m of true location

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Conclusions

Further Research

- IEEE 802.16, WIMAX, can be extended for indoor location.
- sensory network calibration on walls

real-time location estimation for the RadLoco software

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Conclusions

List of Publications

- Eugene Hyun, Michael McGuire, Mihai Sima, "RadLoco: A Rapid and Low Cost Indoor Location-Sensing System" IEEE 3rd International Conference on Communications and Networking in China, Hangzhou, Aug 2008.
- Michael McGuire, Eugene Hyun, Mihai Sima, "Location Aware Computing for Academic Environments" The 3rd International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (MobConQoE '07), Vancouver, Canada, Aug 2007.
- Eugene Hyun, Diego Felix, Michael McGuire, Mihai Sima, "A Three-Dimensional Indoor Location-Sensing using Radio and Ultrasonic Sensing Technologies", ETRI Journal (in Preparation)
- Eugene Hyun, Mihai Sima, Michael McGuire, "Reconfigurable Implementation of Wavelet Transform on an FPGA-Augmented NIOS Processor", IEEE Canadian Conference on Electrical and Computer Engineering (CCECE '06), Ottawa, Canada. May 2006, pp. 1052-1055.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you!

Thank you!

Block Diagram of Estimated Location

weighted average function

$$w_i = \frac{\mathsf{K}(\boldsymbol{x} - \boldsymbol{X}_i)}{\sum_{i=1}^{N} \mathsf{K}(\boldsymbol{x} - \boldsymbol{X}_i)}$$

(1)

Eugene Hyun, Michael McGuire, Mihai Sima

RadLoco: A Rapid and Low Cost Indoor Location-Sensing System

◆□> ◆□> ◆豆> ◆豆> 三目目 のへの

Software Setup

steps

start Netstumbler and load Radloco perlscript

Eugene Hyun, Michael McGuire, Mihai Sima

Software Setup

steps

load map into Radloco and click on map to record data

Eugene Hyun, Michael McGuire, Mihai Sima

Software Setup

steps

crickets provide ground truth coordinates

Eugene Hyun, Michael McGuire, Mihai Sima

Software Setup

steps

RSS, BSSID and coordinates are saved to MySQL database

Eugene Hyun, Michael McGuire, Mihai Sima

Software Setup

steps

data processing is performed in Matlab

Eugene Hyun, Michael McGuire, Mihai Sima

Bayesian Estimation Algorithm - 1

Minimum Mean Square Estimate (MMSE)

The MMSE of the terminal location is

$$\hat{\theta}_{MMSE} = E[\theta|\boldsymbol{x}] = \int_{S} \theta f_{\Theta}(\theta|\boldsymbol{x}) d\theta$$
 (2)

The above equation can be expanded to

$$\hat{\theta}_{\text{MMSE}} = \int_{S} \theta \frac{f_{\boldsymbol{X},\Theta}(\boldsymbol{x},\theta)}{f_{\boldsymbol{X}}(\boldsymbol{x})} d\theta = \frac{\int_{S} \theta f_{\boldsymbol{X},\Theta}(\boldsymbol{x},\theta) d\theta}{f_{\boldsymbol{X}}(\boldsymbol{x})} = \frac{\int_{S} \theta f_{\boldsymbol{X},\Theta}(\boldsymbol{x},\theta) d\theta}{\int_{S} f_{\boldsymbol{X},\Theta}(\boldsymbol{x},\theta) d\theta}$$
(3)

Eugene Hyun, Michael McGuire, Mihai Sima RadLoco: A Rapid and Low Cost Indoor Location-Sensing System

hhh D

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Bayesian Estimation Algorithm - 2

Minimum Mean Square Estimate (MMSE)

The joint approximate PDF is given by

$$\hat{f}_{\Theta,\boldsymbol{X}}(\boldsymbol{\theta},\boldsymbol{X}) = \frac{1}{N}(h_{X})^{-L}(h_{\theta})^{-2}\sum_{i=1}^{N}\mathsf{K}_{\boldsymbol{X}}\left(\frac{\boldsymbol{X}-\boldsymbol{X}_{i}}{h_{X}}\right)\mathsf{K}_{\Theta}\left(\frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{i}}{h_{\theta}}\right)$$
(4)

with $K(\cdot)$ being the Kernel functions for location and RSS measurements. The value *L* represents length of vector **x**.

Kernel Function

For the kernel functions $K(\cdot)$ we use the standard multivariate Gaussian distribution:

$$K_{\boldsymbol{X}}(\boldsymbol{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^{L} \exp\left(-\frac{1}{2}(\boldsymbol{x}^{T}\boldsymbol{x})\right)$$

Eugene Hyun, Michael McGuire, Mihai Sima

RadLoco: A Rapid and Low Cost Indoor Location-Sensing System

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

(5)

Bayesian Estimation Algorithm - 3

Joint approximate PDF

If we substitute the estimated PDF from Equation (4) into (3) and perform integration by substitution using $\boldsymbol{u} = \boldsymbol{\theta} - \boldsymbol{\theta}_i$, we can reduce:

$$\int \boldsymbol{\theta} \,\mathsf{K}_{\Theta} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_{i}\right) d\boldsymbol{\theta} = \int \left(\boldsymbol{u} + \boldsymbol{\theta}_{i}\right) \mathsf{K}_{\boldsymbol{U}}(\boldsymbol{u}) d\boldsymbol{u} = \boldsymbol{\theta}_{i} \tag{6}$$

since the mean of the random variable **U** is:

 $\int \boldsymbol{u} K_{\boldsymbol{v}}(\boldsymbol{u}) d\boldsymbol{u} = 0$

and

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Bayesian Estimation Algorithm - 4

Minimum Mean Square Estimate (MMSE)

The resulting estimated location $\hat{\theta}$ is then a weighted average where the sum is taken across the weighted locations in the subset:

$$\hat{\theta} = \sum_{i=1}^{N} w_i \theta_i \tag{7}$$

(8)

with the weights w_i for each survey point *i* being defined as:

$$w_i = \frac{\mathsf{K}(\boldsymbol{x} - \boldsymbol{X}_i)}{\sum_{i=1}^{N} \mathsf{K}(\boldsymbol{x} - \boldsymbol{X}_i)}$$

Kernel Width

Kernel width

Small values of h_x indicate that the RSS vectors can change radically with short spatial displacements of the mobile device while larger values indicate that the RSS changes significantly only with large spatial displacements.

Kernel Width

Optimal Kernel Width

- two datasets are needed for training:
 - survey set dataset A
 - 2 validation set dataset B.
- Each location in dataset B estimated using Kernel Estimator with survey dataset A, while varying the parameter h_x.
- The h_x that produces the minimum MSE is the optimal kernel width for the training dataset B.
- In theory, we need a training set of infinite size to determine optimal kernel. Therefore optimal means best kernel given our finite datasets.
- A third dataset C can be used for verification and is considered the test dataset. The set C is not used for training because it would extend the survey set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Kernel Width

Cross-Validation

 collecting multiple datasets may be costly and time consuming: determine the optimal kernel width h_x for one dataset using a cross-validation approach.

$$MSE(h) = \sum_{i=1}^{N} \left[\theta_i - \sum_{k=1,\neq i}^{N} w_k \theta_k \right]^T \times \left[\theta_i - \sum_{k=1,\neq i}^{N} w_k \theta_k \right]$$
(9)

 remove a survey point from the survey set, then estimating the location of the survey point using the rest of the survey points, while varying h_x values.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Error Calculation

green dot = true location red dot = estimated location

Error Calculation

Error Calculation

