Reconfigurable Solutions For Adaptive Path Prediction
Zorawar Bhatia, Dian-Marie Ross, Mihai Sima
http://recoeng.ece.uvic.ca

Introduction
- Following the project theme of Intelligent Systems and Sensors, used to increase the safety of modern vehicles
- Overall project: Inertial Sensor Cluster for Adaptive Path Prediction
- Dynamic model is a set of differential equations describing the maneuvering capabilities of the vehicle—Kalman filter. Computationally intensive: Use FPGA
- Many common mathematical operations are required in the course of computing a complex algorithm. To maximize overall efficiency, these operations themselves must be as efficient as possible: consider CORDIC

CORDIC (COordinate Rotation DIgital Computer)
- CORDIC is a cheap method to compute many transcendental functions
 - Trigonometric and hyperbolic functions, as well as exponential functions, logarithms, multiplications, divisions, and square roots.

Advantages
- Requires no hardware multiplier; only shift, addition and subtraction operations, and table lookup are used
- Therefore performs faster in most cases, (especially when no hardware multiplier is available)
- Minimizes number of gates required to implement supported functions, most useful for FPGA applications

Disadvantages
- When hardware multiplier available can be slower than table lookup methods (eg in DSP microprocessor)

Method of Computation
- Using only bitshift and addition operations, (and LUT access) vectors can be rotated, due to rotation operation of:
 - \(x(i+1) = x(i) - y(i) \tan(\alpha(i)) \)
 - \(y(i+1) = y(i) + x(i) \tan(\alpha(i)) \)
 - \(z(i+1) = z(i) - \alpha(i) \)
 - Where \(\tan(\alpha(i)) = d_i \cdot 2^{-1}, d_i \in \{-1,1\} \)

Example
- To compute the square root or magnitude of two numbers, a vector can be rotated to a point where \(y = 0 \), and \(x = \) magnitude of vector, as in the adjacent figure
- Conversion between cartesian and polar co-ordinates is possible.

Precision
- CORDIC can compute to arbitrary precision, however, finite registers on processor limit precision of result
- Computation wise, at minimum, each additional bit of precision requires another iteration of processing

FPGA
- Field-programmable gate array is an integrated circuit that is configured after manufacturing, in “field”
- Contain programmable logic units which are “wired together” as in the following diagram
- Logic blocks can be configured to compute complex combinational functions or simple gates
- Interconnects
 - Are reconfigurable
 - Are slow
 - Main FPGA bottle-neck
 - Programmer must design to minimize interconnect usage

CORDIC on a FPGA
- Consists of Barrel Shifter, adder, subtractor, and LUTs
- Barrel Shifter
 - Three Options: Rolled, Unrolled and Partially Rolled
 - Rolled, Requires Barrel Shifter
 - Separate modules exist on FPGA
 - Less space but more interconnect use
 - Slower operation; signal travels between modules: interconnect use
 - Faster clock frequency
 - Not necessarily faster overall operation
 - Unrolled, No Barrel Shifter
 - Combinational method
 - Larger footprint
 - Slower clock frequency
 - Possibly faster overall computation
 - Partially Rolled
 - Combination of above two methods with more combinational parts than Rolled

Applications
- Trigonometric and hyperbolic functions as well as exponential functions, logarithms, multiplications, divisions, and square roots.
- Linear algebra, (QR, SVD)
- Kalman filter for Adaptive Path Prediction

Theme: F
Project: F304-FIS

P.O. Box 3055 Stn CSC
Victoria, B.C. V8W 3P6
CANADA